Урок физики в 9-м классе "Выпуск живой газеты"

Разделы: Физика


Задачи урока.

Развивать монологическую речь, память, способствовать расширению кругозора, прививать экологическую культуру.

Оборудование.

Экран, компьютер, проектор,
Запись на доске. Тема. Атомная энергетика, её плюсы и минусы. Альтернативные источники энергии.

Цель.

Рассмотреть преимущества АЭС, а также проблемы современной энергетики и пути их решения.

Таблица:

Что мы знаем по данной теме? Что узнали нового?

 

 

Ход урока

  1. Организационный момент. Приветствие. Запись в журнале.
  2. Актуализация знаний.
  3. Новая тема.
    Учитель - Аверьянов Никита расскажет об устройстве ядерного реактора и покажет на схеме основные части реактора.

 Принцип действия

Схема работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР)

Ученики самостоятельно заполняют первую колонку таблицы.
А. Никита – Ядерный реактор – устройство, в котором выделяется тепловая энергия в результате управляемой цепной реакции деления ядер.
Ядерное топливо уран 235 располагается в активной зоне в виде вертикальных стержней ТВЭЛ (тепловыделяющие элементы)
Замедлитель (обычная и тяжёлая вода) хорошим замедлителем считается также графит.
Вводят в активную зону для замедления вторичных нейтронов.
Отражатель нейтронов окружает активную зону, служит для уменьшения утечки нейтронов и увеличения коэффициента размножения.
Регулирующие стержни (кадмий, карбид бора) управляют скоростью цепной реакции, посредством передвижения в активную зону.
Радиационная защита (железобетон с соединениями бора) для защиты персонала.
Учитель. – Никита ответь, какие преобразования энергии происходят на АЭС.
А.Никита – Внутренняя энергия атомных ядер урана переходит в кинетическую энергию нейтронов и осколков ядер затем во внутреннюю энергию воды затем во внутреннюю энергию пара, в кинетическую энергию пара, в кинетическую энергию ротора турбины и ротора генератора то есть в электрическую энергию.
Учитель – Молодец..Ребята, сегодня мы попробуем принять новую информацию в форме живой газеты, статьи к этой газете подготовили ваши одноклассники. Итак, начнём верстать нашу газету Семягин Илья расскажет о истории АЭС
Слайд презентации.


Атомная электростанция в Сиво во Вьенне. На фотографии хорошо видны градирня и здания двух энергоблоков.


Страны с атомными электростанциями (АЭС).

История

В 1948 г. по предложению И. В. Курчатова и в соответствии с заданием партии и правительства начались первые работы по практическому применению энергии атома для получения электроэнергии.
В мае 1950 года близ посёлка Обнинское Калужской области начались работы по строительству первой в мире АЭС.
За пределами СССР первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания).Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).
Мировыми лидерами в производстве ядерной электроэнергии являются: США (788,6 млрд кВт·ч/год), Франция (426,8 млрд кВт·ч/год), Япония (273,8 млрд кВт·ч/год), Германия (158,4 млрд кВт·ч/год) и Россия (154,7 млрд кВт·ч/год).
Крупнейшая АЭС в Европе — Запорожская АЭС у г. Энергодар (Запорожская область, Украина), строительство которой начато в 1980 г. На середину 2008 г. работают 6 атомных реакторов суммарной мощностью 6 ГВт.
В 1979 г. произошла авария на АЭС В Три –Майл-Айленд (США)
В 1986 г произошла авария в реакторе третьего энергоблока Чернобыльской АЭС.
Ученики. – Какова причина аварии?
Учитель - Избыточное число регулирующих стержней было удалено из активной зоны реактора (нарушен тех. процесс, скорость реакции возросла) . Мощность реактора возросла в 100 раз.
Ученики – Произошёл взрыв.
Учитель – Взрыв пара разгерметизировал трубы системы охлаждения и повредил бетонную плиту радиационной защиты. Графитовый замедлитель сгорел за несколько дней. Радиоактивное заражение обширных территорий Украины, Белоруссии, России будет сказываться ещё много лет. Теперь пришло время послушать об альтернативных источниках энергии, начнёт Буренкова Даша.
Слайд.

История использования энергии ветра


Мельница со станиной


Ветряные мельницы в Ла Манче, Испания

«Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле» (К. Маркс. «Машины: применение природных сил и науки»).
В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы. Толедо — 1526 г., Глочестер — 1542 г., Лондон — 1582 г., Париж — 1608 г., и др. Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.
Первая в мире современная ветроэлектростанция с горизонтальной осью мощностью 100 кВт была построена в 1931 году в Крыму.

 Современные методы генерации электроэнергии из энергии ветра

Современные ветрогенераторы работают при скоростях ветра от 3—4 м/с до 25 м/с.
Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.
Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Были попытки построить ветрогенераторы так называемой ортогональной конструкции, то есть с вертикальным расположением оси вращения. Считается, что они имеют преимущество в виде очень малой скорости ветра, необходимой для начала работы ветрогенератора. Главная проблема таких генераторов — механизм торможения. В силу этой и некоторых других технических проблем ортогональные ветроагрегаты не получили практического распространения в ветроэнергетике.
Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.
Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров. 5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.

Использование энергии ветра

В 2008 году суммарные мощности ветряной энергетики выросли во всём мире до 120 ГВт. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд. кВт.ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов.
В 2007 году в Европе было сконцентрировано 61 % установленных ветряных электростанций, в Северной Америке 20 %, Азии 17 %.


Строительство турбины в Германии

Страны Евросоюза в 2005 году вырабатывают из энергии ветра около 3 % потребляемой электроэнергии.
В 2007 году ветряные электростанции Германии произвели 6,2 % от всей произведённой в Германии электроэнергии.

Ветроэнергетика в России

Технический потенциал ветровой энергии России оценивается свыше 50 000 миллиардов кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.
Установленная мощность ветровых электростанций в стране на 2006 год составляет около 15 МВт.
Одна из самых больших ветроэлектростанций России (5,1 МВт) расположена в районе поселка Куликово Зеленоградского района Калининградской области. Её среднегодовая выработка составляет около 6 млн кВт.ч.
На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт) среднегодовой выработкой более 3 млн кВт·ч, параллельно станции установлен ДВС, вырабатывающий 30 % энергии установки.
Также крупные ветроэлектростанции расположены у деревни Тюпкильды Туймазинского района респ. Башкортостан (2,2 МВт).
В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт·ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт.ч.
В республике Коми вблизи Воркуты строится Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.
На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.
В 1996 году в Цимлянском районе Ростовской области установлена Маркинская ВЭС мощностью 0,3 МВт.
В Мурманске действует установка мощностью 0,2 МВт.
Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будушей ВЭС работающей в комплексе с Кислогубской ПЭС.
Как пример реализации потенциала территорий азовского моря можно указать Новоазовскую ВЭС, действующей на 2007 год мощностью в 20,4 МВт, установленную на украинском побережье Таганрогского залива.
Реализуется «Программа развития ветроэнергетики РАО „ЕЭС России“». На первом этапе (2003—2005 г.) начаты работы по созданию многофункциональных энергетических комплексов (МЭК) на базе ветрогенераторов и двигателей внутреннего сгорания. На втором этапе будет создан опытный образец МЭТ в посёлке Тикси — ветрогенераторы мощностью 3 МВт и двигатели внутреннего сгорания. В связи с ликвидацией РАО ЕЭС России все проекты, связанные с ветроэнергетикой были переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций.
Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъемный агрегат «Ромашка».

Учитель, спасибо Даша за интересный рассказ, теперь послушаем Сулейманова Фаиза.
Слайд.

Приливная электростанция

Прили?вная электростанция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 13 метров.
Существует мнение, что работа приливных электростанций тормозит вращение Земли, что могло бы привести к негативным экологическим последствиям. Однако ввиду колоссальной массы Земли влияние приливных электростанций незаметно. Кинетическая энергия вращения Земли (~1029 Дж) настолько велика, что работа приливных станций суммарной мощностью 1000 ГВт будет увеличивать длительность суток лишь на ~10?14 секунды в год, что на 9 порядков меньше естественного приливного торможения (~2?10?5 с в год).


Крупнейшая в мире приливная электростанция Ля Ранс, Франция


Макет станции Ля Ранс

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция.
В России c 1968 года действует экспериментальная ПЭС в Кислой губе на побережье Баренцева моря на 2009 год её мощность составляет 1,7 МВт. В советское время были разработаны проекты строительства ПЭС в Мезенской губе (мощность 11 000 МВт) на Белом море, Пенжинской губе и Тугурском заливе (мощностью 8000 МВт) на Охотском море, в настоящее время статус этих проектов неизвестен, за исключением Мезенской ПЭС, включённой в инвестпроект РАО «ЕЭС». Пенжинская ПЭС могла бы стать самой мощной электростанцией в мире — проектная мощность 87 ГВт.
Существуют ПЭС и за рубежом — во Франции, Великобритании, Канаде, Китае, Индии, США и других странах. ПЭС «Ля Ранс», построенная в эстуарии р. Ранс (Северная Бретань) имеет самую большую в мире плотину, ее длина составляет 800 м. Плотина также служит мостом, по которому проходит высокоскоростная трасса, соединяющая города Св. Мало и Динард. Мощность станции составляет 240 МВт, в Норвегии - ПЭС Хаммерфест,в Канаде - ПЭС Аннаполис.
Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов .
Учитель спасибо Фаиз, как видите сегодня на уроке мы обращаемся к географии, очень много упомянули стран и географических названий. Теперь послушаем Калачёву Елену.
Слайд.

Солнечная энергетика — непосредственное использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.
20 ноября 1980, Стив Птачек совершает полет на самолёте, питающемся только солнечной энергией.
Поток солнечного излучения, проходящий через площадку в 1 м?, расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли), равен 1367 Вт/м? (солнечная постоянная). Из-за поглощения, при прохождении атмосферной массы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) — 1020 Вт/м?. Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше.
Возможная выработка энергии уменьшается из-за глобального затемнения - уменьшения потока солнечного излучения, доходящего до поверхности Земли.


Получение энергии с помощью фотоэлементов


Прачечная, использующая для работы солнечную энергию

Способы получения электричества и тепла из солнечного излучения

  • Получение электроэнергии с помощью фотоэлементов.
  • Преобразование солнечной энергии в электричество с помощью тепловых машин:
    • паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;
    • двигатель Стирлинга и т.д.
  • гелиотермальная энергетика - Нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).
  • Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).
  • Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.


Солнечные батареи на крыше здания Академии наук России

Достоинства солнечной энергетики

  • Общедоступность и неисчерпаемость источника.
  • Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Учитель, спасибо Елена, послушаем Бирюлёву Татьяну
Геотермальная энергетика — производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли. Обычно относится к альтернативным источникам энергии, возобновляемым энергетическим ресурсам.
В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100°C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.
Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста Рике, Филиппинах, Индонезии, Китае, Японии, Кении. Слайд.


Исландия

Ресурсы

Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, общирные территории Кордильер и Анд.
Россия
На 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м?/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).

Достоинства и недостатки

Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.
Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех трех целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.
Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, по имеющимся данным, в Западной Сибири имеется подземное море площадью 3 млн м2 с температурой воды 70—90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, Казахстане, на Камчатке и в ряде других районов России.
Какие проблемы возникают при использовании подземных термальных вод? Главная из них заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.
Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.
Итак, достоинствами геотермальной энергии можно считать практическую неисчерпаемость ресурсов, независимость от внешних условий, времени суток и года, возможность комплексного использования термальных вод для нужд теплоэлектроэнергетики и медицины. Недостатками ее являются высокая минерализация термальных вод большинства месторождений и наличие токсичных соединений и металлов, что исключает в большинстве случаев сброс термальных вод в природные водоемы.
Учитель. Спасибо Таня за полезную информацию. Ребята наш урок подходит к концу, я надеюсь, что он прошёл не зря и вы узнали много нового , интересного , о чём не забудете написать во второй колонке таблицы. Тетради я соберу на проверку, на следующем уроке. Поблагодарим выступавших за содержательные выступления. Всем выступавшим пятёрки, подайте дневники.
Домашнее задание. П. 69, заполнить таблицу.

СПАСИБО ЗА УРОК

Используемые материалы:

  • Э.М. Браверман «Преподавание физики развивающие ученика» книга I Москва 2003г.
  • В.А. Касьянов «Физика 11» М. Дрофа 2003г.
  • ru.wikipedia.org

Приложения: