"Семь раз отмерь…" Программа элективного курса на использование измерений и решений задач

Разделы: Математика


Пусть читатель прогуливается в огромном саду геометрии, в котором он сможет подобрать себе такой букет, какой ему нравится.
Давид Гильберт

Введение

Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Элективные курсы это новейший механизм актуализации и индивидуализации процесса обучения. С хорошо разработанной системой элективных курсов каждый ученик может получить образование с определенным желаемым уклоном в ту или иную область знаний.

Элективные курсы выполняют три основных функции:

  • Одни из них могут выступать в роли "надстройки", дополнения содержания профильного курса. В этом случае такой дополненный профильный курс становится в полной мере углубленным.
  • Второй тип позволяет интересующимся школьникам удовлетворить свои познавательные потребности и получить дополнительную подготовку, например, для сдачи ЕГЭ по этому предмету на профильном уровне.
  • Третий тип элективных курсов направлен на удовлетворение познавательных интересов отдельных школьников в областях деятельности человека как бы выходящих за рамки выбранного им профиля.

Элективные курсы - обязательные курсы по выбору учащихся, входящие в состав профиля обучения на старшей ступени школы. В первую очередь - это занятия по выбору, позволяющие школьникам развить интерес к тому или иному предмету и определить свои профессиональные пристрастия.

На элективных курсах математики преследуется задача более полного овладения, углубления и совершенствования уровня.

Использование элективных курсов математики позволяет усилить линию алгоритмического мышления, перейти на более высокий уровень знаний, превысить государственный стандарт за счет активизации обучения, совмещать информационные и деятельностные методы, сформировать навыки использования информационных ресурсов и информационных технологий в практике.

Элективные курсы математики позволяют, не выходя за рамки учебной нагрузки, развивать содержание базового курса, получить дополнительную подготовку к ЕГЭ, готовить учащегося к осознанному выбору будущей профессии..

Элективные курсы математики - шаг к успеху!

Пояснительная записка

Одной из самых важных проблем сегодня в нашей стране является проблема образования. Причем речь идет не о высшей ступени, а о средней, самой главной, ступени образования. Сущность проблемы заключается в том, что у учащихся снизился интерес к изучению, как всех предметов, так и математики, в частности. Поэтому цель работы состоит в повышении интереса к математике за счет изучения нового, не связанного с общеобразовательной программой материала.

В наше время происходят процессы глобализации образования, широкого внедрения новых технологий дистанционного обучения, Интернет и мультимедиа-технологий. Необходимо видеть, что наряду с несомненными достоинствами происходящие процессы несут в себе и отрицательные моменты. Технологизация, компьютеризация образования удаляет ученика от учителя других учеников. Одним из возможных направлений сближения может быть повышение интереса к предмету, демонстрация его практических приложений, возможность решать интересные и практически значимые задачи вместе (как с учителем, так и с группой учеников). Особенностью большинства задач на местности является то, что для получения данных задачи и ее решения необходимо участие нескольких человек.

Образование теснейшим образом связано с духовной культурой. Цель всего образования и математического образования в частности - формирование, воспитание духовной культуры личности. Геометрическое мышление в своей основе является разновидностью образного, чувственного мышления.

Наглядность и практичность обучения геометрии являются необходимыми условиями успешного ее изучения. Формирование отвлеченного мышления у школьников с первых школьных шагов требует предварительного пополнения их сознания конкретными представлениями. При этом удачное и умелое применение наглядности побуждает учеников к познавательной самостоятельности и повышает их интерес к предмету, является важнейшим условием успеха

Наглядные методы применяются на всех этапах педагогического процесса. Формирование геометрических представлений является важным разделом умственного воспитания, политехнического образования, имеют широкое значение во всей познавательной деятельности человека.

Известно, что механическое, нетворческое усвоение школьниками большого объема фактов, представленных в школьном курсе математики, несовместимо с подлинной образованностью, с полноценным воспитанием умственных, нравственных и других качеств личности учащихся, подготовкой их к активному участию в создании материальных и духовных ценностей независимо от того, какую профессию они получат в дальнейшем. Удачный подбор содержательных практических задач еще не обеспечивает должного эффекта. Такие задачи, как правило, вызывают у учащихся затруднения. Условия прикладной задачи только тогда легко доходит до сознания учащихся, когда они (а тем более учитель) встречались с описываемой производственной ситуацией в реальной действительности. Поэтому при постановке задач следует широко опираться на наглядные аналоги из производственного окружения школы, на трудовой опыт учащихся.

Велико значение геометрии в развитии личности. Установлено, что развитое пространственное мышление, прочные математические знания и умения школьников представляют собой важнейшие компоненты готовности к непрерывному образованию, что является актуальным в настоящее время. Необходимость достаточно высокого уровня развития пространственного мышления для успешного усвоения учащимися общеобразовательных предметов и дальнейшего профессионального образования в условиях современного производства доказана многими исследователями психологами.

Умение решать задачи на местности - так же как и руководить их решением - приходит с опытом, при систематическом использовании таких задач в учебном процессе.

Все выше сказанное говорит об актуальности проблемы исследования, которая заключается в изучении теории и отборе содержания данной темы для элективного курса математики.

Название элективного курса: "Семь раз измерь, :"

(Использование измерений и решение задач на местности при изучении школьного курса геометрии).

Задачи элективного курса:

1. Изучить математическую, психолого-педагогическую, методическую литературу по проблеме.

2. Подобрать и адаптировать для школьников теоретический и практический материал, позволяющий продемонстрировать приложение геометрических фактов к решению задач на местности.

3. Найти эффективные пути и способы организации элективных занятий.

4. Разработать методику проведения элективных занятий по теме "Решение задач на местности".

5. Провести экспериментальную проверку отобранного материала и методики элективных занятий.

Цели:

  • работа с учащимися, отстающими от других в изучении программного материала .
  • работа с учащимися, проявляющими к изучению математики повышенный, по сравнению с другими, интерес и способности.

Предусмотренные виды деятельности:

Элективные курсы работают на базе общего курса геометрии и не требуют перестройки системы обучения. Занятия такого рода - более массовая форма повышения математической подготовки школьников.

Элективные занятия необходимо соотносить с основным курсом геометрии. Для достижения такой связи используются разнообразные приемы:

  • систематизация, когда соответствующая элективная тема изучается после того, как в основном курсе накоплен обширный материал, относящийся к данной теме;
  • последовательное развертывание теории, когда в основном курсе имеется начальный этап ее построения, не доведенный до обобщающих результатов;
  • развернутое описание приложений определенного метода, если в основном курсе они только упомянуты.

Предполагаемые результаты обучения:

Занимаясь на элективных занятиях, учащиеся имеют большую возможность подготовиться к олимпиадам, к выступлениям на школьных математических вечерах. Тем самым элективные курсы оказывают положительное воздействие на внеклассную работу.

Задачи, предлагаемые учащимся на элективных занятиях, должны иметь познавательный интерес, привлекать и заинтересовывать учащихся, развивать в них изобретательность и мышление, реализовать свои знания в практической ситуации.

Структура элективного курса

Тема 1: Простейшие задачи, решаемые на местности

Цель: научиться применять теоретические знания для решения задач с практическим содержанием, показать красоту и значимость геометрии.

Тема 2: Задачи с измерениями при различных ограничениях

Цель: При решении задач, связанных с измерениями на местности не всегда применимы непосредственные геометрические измерения. Существуют трудности, связанные с такими измерениями. При решении задач необходимо, чтобы используемые способы были осуществимы на практике и применялся минимум необходимых средств для построений, измерений и вычислений.

Тема 3: Задачи, предлагаемые учащимся сельской школы

В особое внимание нуждается сельская школа. Ее состояние и уровень работы существенно влияет на социальное развитие села, закрепление молодежи, повышение культурного уровня сельского населения, решение демографических проблем в деревни. Перед сельской школой ставится задача воспитания у учащихся стремления активно участвовать в подъеме сельскохозяйственного производства .

Большие возможности естественной органической связи учебного материала с сельскохозяйственным производством имеются у учителя математики. Такая связь может осуществляться различными способами: сообщение учителя на уроках о применении изучаемых вопросов в сельскохозяйственной практике, решение задач прикладного характера, проведение практических работ и экскурсий.

Традиционной и наиболее естественной формой связи учебной работы по математике с сельскохозяйственным производством является решение на уроках задач из сельскохозяйственной практики. С другой стороны, практические задачи способствуют формированию правильного понимания природы математики, развитию материалистического мировоззрения.

Курс предназначен для учащихся 9 класса средних общеобразовательных учреждений, реализующих предпрофильную подготовку. Расчитан на 17 часов аудитного времени

Тематическое планирование учебного материала

Тема Количество часов Технология реализации
Постановка задачи

1

беседа
Простейшие задачи, решаемые на местности

2

Комбинированный урок, урок-практикум
Задачи с измерениями при различных ограничениях

2

Урок-рактикум
На равном расстоянии

2

Комбинированный урок
Неравенство треугольника и уравнение прямой

2

Урок-беседа
Подобие фигур

2

Урок-беседа
Тригонометрические функции

2

Комбинированный урок
Окружность

2

Комбинированный урок
Центральный угол и дуга окружности

1

Комбинированный урок
Площади фигур

1

Урок-практикум

Занятие 1

Проверка и актуализация базовых знаний.

На данном занятии надо рассказать о целях и задачах изучения курса, о важности получаемых знаний для итоговой аттестации как в основной так и в средней школе. Проверка базовых знаний осуществляется за счет вводного теста.

Занятие 2-3

Простейшая геометрия на местности

Цель урока: научиться применять теоретические знания для решения задач с практическим содержанием, показать красоту и значимость геометрии.

Для практических целей часто возникает необходимость производить геометрические построения на местности. Такие построения нужны и при строительстве зданий, и при прокладке дорог, и при различных измерениях объектов на местности. Можно подумать, что работа на ровной поверхности земли (а именно такой мы и будем ее считать во всех задачах настоящего параграфа) ничем, по существу, не отличается от работы циркулем и линейкой на обыкновенном листе бумаги. Это не совсем так. Ведь на бумаге циркулем мы можем проводить любые окружности или их дуги, а линейкой -- любые прямые. На местности же, где расстояния между точками довольно велики, для подобных действий понадобилась бы длинная веревка или огромная линейка, которые не всегда имеются под руками. Да и вообще чертить прямо на земли, какие бы то ни было линии--дуги или прямые -- представляется весьма затруднительным. Таким образом, построения на местности имеют свою специфику.

Необходимо отказаться от проведения настоящих прямых на земле. Будем эти прямые прокладывать, т. е. отмечать на них, например, колышками, достаточно густую сеть точек. Для практических нужд этого обычно хватает, поскольку передвижение по прямой от одного колышка к другому, расположенному на близком расстоянии от первого, - действие, вполне осуществимое.

Так же необходимо при построениях не проводить на земле какие-либо дуги вообще - большие или маленькие. Поэтому фактически циркуля у нас нет. Все, что остается от циркуля,- это способность откладывать на данных (проложенных) прямых конкретные расстояния, которые должны быть заданы не численно, а с помощью двух точек, уже обозначенных колышками где-то на местности. Ведь сами расстояния будут измеряться шагами, ступнями, пальцами рук или любыми подходящими для этой цели предметами (в лучшем случае измерительными приборами). Так что отложить расстояние, составленное, скажем, из 25 шагов, 3 размахов пальцев и 2 спичечных коробок, можно лишь в таком же виде, но никак не умноженное, к примеру, на или в.

При указанных ограничениях, не пользуясь к тому же транспортиром, работать, конечно, трудно, но все же задачи решаемы.

На местности колышками обозначены две удаленные друг от друга точки. Как проложить через них прямую и, в частности, как можно без помощника устанавливать колышки на прямой между данными точками?

Пользуясь зрительным эффектом состоящим в загораживании двух колышков третьим, стоящим на общей с ними прямой, нетрудно установить еще один колышек в некоторой точке С на продолжении отрезка с концами в двух данных точках А и В. После этого точки отрезка АВ можно построить с помощью того же эффекта, поскольку они будут лежать на продолжении либо отрезка АС, либо ВС (в зависимости от того, какая из точек-А или В - находится ближе к течке С). Вообще, любая точка прямой АВ будет лежать на продолжении хотя бы одного из отрезков АВ, АС или ВС.

На местности колышками обозначены две точки одной прямой и две точки другой прямой. Как найти точку пересечения этих прямых?

Пользуясь зрительным эффектом, указанным в решении задачи выше, легко найти точку пересечения прямых в том случае, если сразу ясно, что она лежит на продолжениях обоих отрезков с концами в данных точках. В противном случае достаточно сначала проложить одну или обе прямые так, чтобы на каждой из них с одной стороны от предполагаемой точки пересечения были отмечены по две точки.

На местности обозначены точки А и В. Найдите точку С, симметричную точке А относительно точки В.

Продолжим прямую АВ за точку В и отложим на ней точку С на расстоянии АВ от точки В. Для этого понадобится измерить в подходящих единицах длины расстояние между точками А и В.

На местности обозначены три данные точки А, В и С, не лежащие на одной прямой. Через точку А проложите прямую, параллельную прямой ВС.

Продолжим прямую АВ за точку В и отложим на ней точку D на расстоянии АВ от точки В. Продолжим прямую CD за точку С и отложим на ней точку Е на расстоянии CD от точки С. Тогда отрезок АЕ будет параллелен отрезку ВС, являющемуся средней линией треугольника ADE. Предложенный способ выгодно отличается от множества других способов, опирающихся па измерение углов или на деление отрезка пополам.

Найти середину отрезка АВ, заданного на местности двумя точками А и В.

Возьмем какую-либо точку С, не лежащую на прямой АВ. Продолжим прямую ВС за точку С и отложим на ней точку D на расстоянии 2ВС от точки С. Продолжим прямую AD за точку А и отложим на ней точку Е на расстоянии AD от точки А. Искомая середина F отрезка АВ лежит на его пересечении с прямой ЕС. Действительно, отрезок СЕ параллелен отрезку AG - средней линии треугольника CDE (здесь G - середина отрезка CD). Так как, кроме того, BC=CG, то CF - средняя линия треугольника ABG, откуда AF=FB.

Быть может, приведенный способ нахождения середины отрезка покажется не самым простым. Однако его преимущества хорошо проявляются в следующей задаче, решив которую ученик сможет делить отрезок не только на две, но и на любое число равных частей.

Отрезок, заданный на местности двумя точками А и В, требуется разделить в отношении, в котором находятся длины двух отрезков KL и MN, заданных на местности точками K, L и М, N. Как это сделать?

Построение точки F , делящей отрезок АВ в отношении AB:BF=KL:MN, произведем аналогично построению середины отрезка АВ , описанному в решении задачи 1.5. Отличие будет состоять только в том, что точку С выберем на расстоянии KL от точки В, а точку D - на расстоянии 2MN от точки С. В этом случае прямая ЕС по-прежнему будет параллельна отрезку AG, а значит, разделит отрезок АВ в том же отношении, в котором она делит отрезок BG.

На местности обозначены три точки А, М и N, не лежащие на одной прямой. Проложить биссектрису угла MAN?

Выберем на одной стороне данного угла точки В и С, а на другой точки D и Е так, чтобы выполнялись равенства AB=ВС=АD=DE

Найдем точку О пересечения прямых BE и CD. Тогда прямая АО будет искомой биссектрисой, поскольку в равнобедренном треугольнике АСЕ биссектриса AF является одновременно и медианой, а значит, проходит через точку О пересечения медиан ЕВ и CD.

Проложите на местности какую-нибудь прямую, перпендикулярную прямой, проходящей через заданные точки А и В. Как проложить перпендикуляр к прямой АВ, проходящий через данную точку Н?

Продолжим прямую АВ за точку В и отложим на ней точку С на расстоянии АВ от точки В. Кроме того, отложим на том же расстоянии от точки В еще две точки D и Е в двух разных, но не противоположных направлениях (рис. 4). Найдем точку F пересечения прямых АЕ и CD, а также точку G пересечения прямых AD и СЕ.

Прямая FG перпендикулярна прямой АВ. Действительно, точки А, Е, D и С равноудалены от точки В, т.е. лежат на одной окружности с центром В и диаметром АС. Следовательно, вписанные углы ADC и АЕС прямые, поэтому AD и СЕ - высоты треугольника AFC. Так как все три высоты этого треугольника пересекаются в одной точке G, то прямая FG перпендикулярна стороне АС. Для того чтобы проложить перпендикуляр к прямой АВ через данную точку Н, достаточно проложить через эту точку прямую, параллельную прямой FG.

Занятие 4-5

Измерения при различных ограничениях

Цель урока: научиться применять имеющиеся теоретические и практические знания для решения задач на местности. Изучить изготовления приборов для измерения высоты. Познакомиться с различными способами решения задач

Для нахождения расстояний, высот, глубин или других размеров реальных объектов не всегда можно обойтись непосредственным их измерением -- во многих случаях такие измерения сопряжены с определенными трудностями, а то и вообще практически невозможны. Однако в своей деятельности человеку приходится порой задумываться над тем, как все-таки можно определить интересующую его величину и как сделать это поточнее.

Основными измерительными "приборами", которые всегда имеются "под рукой", являются: шаг, пядь (размах пальцев), сажень (размах рук), уровень глаз (расстояние от земли до глаз) и т. д. Не менее важно следить за надежностью способа, т.е. зависимостью его точности от различных погрешностей, которые неизбежно возникают при работе на местности.

Определить длину своего шага, чтобы впоследствии измерять расстояния шагами достаточно легко. Самый простой и, казалось бы, точный способ состоит в том, чтобы сделать один шаг и измерить расстояние между крайними (наиболее удаленными) точками двух ступней. Такой способ явно не годится по двум причинам. Во-первых, расстояние между крайними точками ступней не равно длине шага, а превосходит ее на длину одной ступни (правильнее было бы измерить расстояние, например, между носками двух ступней). Во-вторых, при всем старании вряд ли можно сделать один обычный шаг - для этого вам нужно оказаться в состоянии обычной ходьбы.

Для определения длины шага достаточно пройти какое-либо заранее известное и не слишком короткое расстояние, скажем между соседними километровыми или стометровыми столбиками на шоссе, и поделить это расстояние на количество сделанных шагов.

Отметим, что средняя длина шага взрослого человека примерно равна половине его роста, считая до уровня глаз.

Измеряя какие-либо длины пальцами руки, лучше не отрывать руку от измеряемой поверхности, а приставлять один палец к другому, который затем снова вытягивать в заданном направлении (описанный процесс отдаленно напоминает движение гусеницы). Чтобы найти длину такого размаха своих пальцев, проще всего отложить вдоль какой-нибудь прямой одни или несколько десятков размахов пальцев, а затем поделить на их количество отложенную в результате длину.

Занятие 6-7

На равном расстоянии

В настоящем параграфе рассматривается несколько практических задач, в которых нужно использовать геометрический материал для нахождения точек или линий на местности из соображений равенства каких-либо расстояний. Построения, которые понадобятся для решения этих задач, должны быть по возможности более простыми. Если они не потребуют никаких средств, выходящих за рамки простейшей геометрии на местности, то такие построения можно будет осуществить в обычных условиях без использования сколько-нибудь сложных измерительных приборов [2]. В противном случае для реализации построений можно изобразить исходную конфигурацию на плане и, решив задачу на бумаге с помощью циркуля и линейки, перенести результат на местность.

Ниже предполагается, что все населенные пункты имеют незначительные размеры и могут быть приняты в задачах за точки, а магистрали, каналы и железные дороги являются прямыми и имеют пренебрежимо малую ширину, т.е. могут быть представлены как прямые линии.

Задачи

1. Невдалеке от двух населенных пунктов проходит шоссе. В каком месте этого шоссе нужно построить автозаправочную станцию, чтобы расстояния от нее до обоих пунктов были одинаковыми?

Обозначим через А и В данные в задаче населенные пункты и проведем на местности серединный перпендикуляр к отрезку АВ. Так как все точки этого перпендикуляра равноудалены от пунктов А и В и никакие другие точки этим свойством не обладают, то автозаправочную станцию нужно построить в точке пересечения перпендикуляра с шоссе (если такая точка найдется).

2. Жильцы трех домов решили совместными усилиями построить колодец. Какое место для колодца следует выбрать, чтобы все три расстояния от него до домов были одинаковыми?

Пусть А, В и С -- точки расположения трех данных домов. Проведем серединные перпендикуляры к отрезкам АВ и ВС. Тогда точка О их пересечения будет единственной точкой, равноудаленной от точек А, В и С, поскольку для этой точки выполнены равенства АО=ОВ и ВО=ОС, а если точку О выбрать иначе, то для нее хотя бы одно из указанных равенств будет несправедливо. Заметим, что проведенные перпендикуляры могут и не пересечься, но только в случае, когда точки А, В и С лежат на одной прямой. Таким образом, искомое место для колодца -- точку О -- можно найти приведенным способом, но лишь при ус-ловии, что дома расположены не на одной прямой.

3. Две магистрали пересекаются под углом, внутри которого протекает речка. Где построить мост через речку, чтобы расстояния от него до обеих магистралей были одинаковыми?

Проведем биссектрису угла, образованного магистралями. Так как все точки этой биссектрисы равноудалены от магистралей и никакие другие точки внутри угла этим свойствам не обладают, то мост через речку нужно построить в точке пересечения биссектрисы с речкой (если такая точка найдется).

4. Две магистрали пересекают канал в разных местах. Где нужно разместить пионерский лагерь, чтобы расстояния от него до канала и до каждой магистрали оказались одинаковыми? Укажите место расположения пионерского лагеря, при котором эти расстояния минимальны?

Каждая магистраль, пересекаясь с каналом, образует две пары вертикальных углов, а четыре их биссектрисы составляют две прямые (рис. 29). Так как все точки этих биссектрис равноудалены от канала и соответствующей магистрали, а никакие другие точки этим свойством не обладают, то все возможные места расположения пионерского лагеря, лежат на пересечениях биссектрис углов при раз-ных вершинах А и В.

Таких точек пересечения может быть, вообще говоря, четыре, поскольку любая из двух прямых, проходящих через вершину А, может пересечься с любой из двух прямых, проходящих через вершину В. Если магистрали не параллельны, то никакие пары этих прямых не параллельны и все четыре точки пересечения реализуются, а наименьшее расстояние до канала (а значит, и до магистралей) достигается в той точке О пересечения биссектрис, которая лежит внутри треугольника, образованного каналом и магистралями. Действительно, из двух точек пересечения биссектрисы внутреннего угла треугольника при вершине А с биссектрисами углов при вершине В ближе к вершине А (а значит, и к каналу) лежит точка О. Аналогично из двух точек пересечения, лежащих на биссектрисе внутреннего угла треугольника при вершине В, также выбираем точку О. Наконец, последняя точка пересечения биссектрис внешних углов треугольника при вершинах А и В лежит вместе с точкой О на биссектрисе угла треугольника при вершине С, причем точка О лежит ближе к вершине С, следовательно, ближе к магистралям и, стало быть, к каналу. Если же магистрали параллельны, то четыре биссектрисы углов при вершинах А и В образуют параллелограмм (из-за симметрии всей картины относительно середины отрезка АВ), поэтому обе точки пересечения этих прямых равноудалены от канала.

5. В каком направлении через город должна проходить магистраль, чтобы два данных населенных пункта лежали по разные стороны от нее на одинаковом расстоянии?

Пусть через город А нужно провести магистраль, равноудаленную от пунктов В и С .Так как точки В и С должны лежать по разные стороны от искомой магистрали, то она должна пересечь отрезок ВС, причем точка пересечения должна совпадать с серединой этого отрезка (что вытекает из равенства соответствующих прямоугольных треугольников). Таким образом, искомая магистраль определена однозначно, если только сама точка А не совпадает с серединой отрезка ВС (в случае их совпадения годится любое направление).

6. Как должна проходить магистраль, чтобы расстояния от нее до трех данных населенных пунктов были одинаковыми? Укажите положение магистрали, при котором эти расстояния минимальны.

Обозначим через А, В и С три данных населенных пункта. Если искомая магистраль может проходить так, чтобы все три точки лежали по одну сторону относительно магистрали (в том числе и на ней самой) и к тому же на равном расстоянии от нее, то точки А, В и С лежат на одной

прямой, параллельной магистрали. В этом случае расстояние минимально, когда магистраль проходит через эти точки.

В противном случае две из данных точек, скажем А и В, должны лежать по одну сторону от искомой магистрали, а третья -- по другую (рис. 31). Так как магистраль равноудалена от точек А и С, то она проходит через середину отрезка АС (см. решение задачи 5), а так как она равноудалена от точек В и С, то проходит и через середину отрезка ВС. Таким образом, мы доказали, что искомая магистраль проходит по одной из трех средних линий треугольни-ка ABC.

Среди возможных расположений магистрали наименьшее расстояние до точек А, В и С, равное половине наименьшей высоты треугольника ABC, достигается, когда магистраль параллельна наибольшей стороне этого треугольника (точнее, какой-нибудь из наибольших сторон, если их несколько), поскольку наименьшая высота в треугольнике соответствует наибольшей стороне -- ведь их произведение есть константа, равная удвоенной площади треугольника.

7. Магистраль пересекает канал под углом, внутри которого расположен населенный пункт. В каком направлении следует провести через этот пункт прямую дорогу, чтобы расстояния по ней до магистрали и до канала оказались одинаковыми?

Проведем прямую через точку А пересечения магистрали с каналом и через данный населенный пункт В. Рассмотрим точку С па этой прямой, удаленную от точки В на расстояние АВ (рис. 32). Тогда если искомая дорога пересекает магистраль и канал в точках D и Е соответственно, то точка В есть центр симметрии четырехугольника ADCE, который, стало быть является параллелограммом. Теперь сами точки D и Е можно найти, проведя через точку С прямые, параллельные каналу и магистрали, до пересечения их соответственно с магистралью (в точке D) и с каналом (в точке Е).

8. Железная дорога пересекает канал под острым углом, внутри которого расположен населенный пункт. В каком месте железной дороги нужно расположить полустанок, чтобы расстояния от него до этого пункта и до канала оказались одинаковыми? Укажите положение полустанка, при котором эти расстояния минимальны.

Из точки А пересечения железной дороги с кана-лом через данный населенный пункт В проведем луч. Опустим из какой-либо точки О железной дороги перпенди-куляр ОС к каналу и найдем на луче АВ точки, удаленныеот точки О на расстояние ОС. Таких точек окажется две -- это буду точки D и Е, лежащие на окружности с центром О и радиусом ОС. Для определенности будем считать, что DA>EA (рис. 33). Проведем отрезки BF и BG, соединяющие точку В с точками F и G на железной дороге и параллельные отрезкам DO и ЕО соответственно. Тогда из подобия соответствующих треугольников будет следовать, что точки F и G равноудалены от канала и от точки В, т. е. они укажут искомые места расположения полустанка. Никаких других возможностей для расположения полустанка нет, поскольку для любой искомой точки существует преобразование гомотетии относительно точки А, переводящее искомую точку в точку О, а точку В в точку луча АВ, удаленную от точки О на расстояние ОС, т. е. в одну из точек D или Е.

9. Две магистрали пересекаются под углом, внутри которого расположен населенный пункт. Как выбрать место для устройства пруда круглой формы, чтобы расстояния от него до этого пункта и до каждой магистрали оказались одинаковыми?

Найдем точку О, в которой должен находиться центр пруда. Поскольку точка О равноудалена от двух данных магистралей, то она лежит на биссектрисе угла между ними. Таким образом, задача сводится к нахождению на данной прямой l - биссектрисе - точки О , равноудаленной от данной точки А - населенного пункта - и от другой данной прямой - той из магистралей, которая образует с прямой l угол, содержащей точку А (этот угол будет обязательно острым, так как он равен половине угла между магистралями). Такая ситуация разобрана в решении задачи 8.

10. Как выбрать место для устройства пруда круглой формы, чтобы расстояния от него до данной магистрали и до каждо-го из двух данных населенных пунктов, расположенных с одной стороны от магистрали, были одинаковыми?

Найдем точку О, в которой должен находиться центр пруда. Поскольку точку О равноудалена от двух данных населенных пунктов А и В, то она лежит на серединном перпендикуляре к отрезку АВ (рис. 34). Таким образом, задача сводится к нахождению на данной прямой h (перпендикуляре) точки О, равноудаленной от точки А или точки В и от другой данной прямой l (магистрали). Если прямые h и l не параллельны и не перпендикулярны, то они в пересечении образуют острый угол, внутри которого расположена одна из точек А и В (ведь обе эти точки лежат по одну сторону от прямой l). Способ нахождения точки О в этом случае указан в решении задачи 2.8. Если прямые h и l перпендикулярны, то точка О должна быть равноудалена от точки их пересечения и от точки А, и этот случай также был разобран в решении задачи 2.1. Наконец, если прямые h и l параллельны, то точка 0 должна быть удалена от точки А на расстояние, равное расстоянию d между прямыми h и l. Поэтому искомая точка лежит на пересечении прямой h и окружности с центром А и радиусом d (таких точек пересечения будет две, поскольку расстояние от точки А до прямой h меньше d - ведь одна из точек А или В расположена между прямыми h и

Занятие 8-9

НЕРАВЕНСТВО ТРЕУГОЛЬНИКА. УРАВНЕНИЕ ПРЯМОЙ

  1. При проектировании сельской дорожной сети часто возникает необходимость соединить дорогами три пункта А, В и С При этом можно проложить дороги по сторонам треугольника ABC, а можно соединить эти пункты с помощью узла разветвления ОВ каком случае общая длина дорожной сети будет меньше?
  2. Решение. Продолжим отрезок АО до пересечения с соответствующей стороной треугольника. В силу неравенства треугольника имеем

    АО + ОЕ < АВ + BE, ОС < ОЕ + ЕС.

    Сложив эти неравенства, получим:

    АО + ОС < АВ + ВС

    Аналогично доказывается, что

    АО + ОВ <АС + ВС, ВО + ОС < АВ +АС.

    Сложив эти неравенства и упростив, по-лучим

    АО + ВО + СО < АВ + ВС + АС.

    Так что использование узла разветвления дает более короткую дорожную сеть.

  3. Дано поперечное сечение земляной плотины, сооруженной на склоне. Перед началом строительства такой плотины вначале отмечают на местности (столбами) ее продольную ось OS, а затем с помощью так называемых от точек и до оси плотины. Найдите эти расстояния, если известно, что высота плотины OS=h , ширина гребня , откосы и имеют уклон 1:n, а уклон склона 1:m.

Литература

1. Бабанский Ю.К. Оптимизация процесса обучения: Общедидактический аспект. - М., 1977.

2. Балк М.Б., Балк Г.Д. Математика после уроков, М., Просвещение, 1977.

3. Балк М.Б., Балк Г.Д. Математический факультатив вчера, сегодня, завтра //Математика в школе - 1987 - №5.

4. Бенбяминов М.Р. Математика и сельское хозяйство, М., 1968.

5. Вилянкин Н.Я., Шибасов Л.Т., Шибасова З.Ф. За страницами учебника математики: Арифметика. Алгебра. Геометрия. - М.: Просвещение: АО "Учеб. мет.", 1996.

6. Ганьшин В.Н. Простейшие измерения на местности, М., 1973 - 126 с.

7. Гильбух Ю., Кондратенко Л., Коробко С. Как не убить талант? //Народное образование. - 1991. - №4.

8. Геометрия. Учебное пособие для 9 и 10 классов средней школы. М., 1979.

9. Депман И.Я., Виленкин Н. Я. За страницами учебника математики. - М. Просвещение, 1989.

10. Занимательная алгебра. Занимательная геометрия. / Я.И. Перьльман. - Ростов н/Д: ЗАО "Книга", 2005.

11. Иваньков П.А. Основы геодезии , топографии и картографии.-М., 1972

12. Иванов П.А. Технические измерения М., 1964

13. Калмыкова З.И. Типологические принципы развивающегося обучения.- М.: Знание, 1979.

14. Методика преподавания математики в средней школе. Частная методика: Учеб. пособие для студентов пед. ин-тов по физ.-мат. спец./А.Я.Блох, В.А. Гусев, Г.В. Дорофеев и др.; Сост. В.И. Мишин. - М.: Просвещение, 1987.

15. Методика преподавания математики в средней школе. Общая методика: Учеб. пособие для студентов физ.-мат. фак. пед. институтов / В.А. Оганесян, Ю.М. Колягин, Г.Л. Луканкин, В.Я. Саннинский. - 2-е изд., пераб. и доп. - М.: Просвещение, 1980.

16. Морозова Н.Г. Учителю о познавательном интересе. М.: Знание, серия "Педагогика и психология", 1979.

17. Педагогическая энциклопедия: в 2-х т./ Под ред. И.А. Каирова, Ф.Н. Петрова. - М.: Советская энциклопедия, 1964. - Т.1.

18. Педагогическая энциклопедия: в 2-х т./ Под ред. И.А. Каирова, Ф.Н. Петрова. - М.: Советская энциклопедия, 1964. - Т.2.

19. Петров В.А. Преподавание математики в сельской школе: Кн. для учителя. - М..6 Просвещение, 1986.

20. Погорелов А.В. Геометрия. М., 1990.

21. Сергеев И.Н., Олехник С.Н., Гашков С.Б. Примени математику. - М., Наука, 1989.

22. Чичигин В.Г. Методика преподавания геометрии: Планиметрия. - М.: Учпедгиз, 1959.

23. Четверухин Н.Ф. Методы геметрических построений, М., Учпедгиз, 1952.

24. Шварцбурд С.И. и др. Состояние и перспективы факультативных занятий по математике: пособие для учителя. - М., 1977.