Разработка урока по теме "Квадратные уравнения (методы решения)"

Разделы: Математика


Цели урока:

обучающие

  • обобщение и систематизация знаний по теме.
  • ликвидация пробелов в знаниях учащихся.
  • установление внутри предметных связей изученной темы с другими темами курса алгебры.

развивающие

  • расширение кругозора учащихся
  • пополнение словарного запаса
  • развитие мышления, внимания, умения учиться

воспитание общей культуры

Оборудование: PC, проектор, экран; у каждого ученика: конспект, пригласительный билет

Организационный момент.

- Приветствие учащихся; проверка готовности к уроку.

- Сообщение темы урока: “Квадратные уравнения. Методы решения”.

- Совместное формулирование цели урока

Сегодня у нас несколько необычный урок – урок-презентация методов решения квадратных уравнений. Как вы думаете, как можно сформулировать цель нашего урока исходя из его темы?

(Речь идет о методах, значит их много (больше одного), надо каждый вспомнить и проиллюстрировать примером)

Иными словами обобщить и систематизировать весь предшествующий опыт решения квадратных уравнений. А зачем нам это надо?

(Для возможности выбора рационального пути решения).

Итак, наша цель: обобщить опыт решения квадратных уравнений, научиться выбирать рациональный путь решения.

Актуализация знаний.

Прежде всего, вспомним, какие уравнения называются квадратными.

(Уравнение вида , где х - переменная, a,b,c – числа , называется квадратным.)

Квадратное уравнение, записанное в таком виде, является стандартным видом уравнения. Как называются числа a, b, c ?

(а – старший коэффициент, b – второй коэффициент, с – свободный член)

Вспомним, как традиционно решаются квадратные уравнения разных видов.

Первый вид квадратных уравнений – неполные квадратные уравнения.

С этим видом квадратных уравнений мы познакомились на первых уроках изучения квадратных уравнений. Вспомним, какие виды неполных квадратных уравнений бывают и как они решаются. (анализ таблицы) < приложение1>

Вспомним, как традиционно решаются квадратные уравнения, записанные в стандартном виде. Прежде всего, обратимся к понятию дискриминанта. Для чего и зачем он нужен? Вспомните слово “дискриминация”, что оно означает? Оно означает унижение одних и возвышение других, т.е. различное отношение к разным людям. Оба слова (и дискриминант и дискриминация) происходят от одного латинского слова, означающего “различающий”. Дискриминант различает квадратные уравнения по числу корней. (анализ слайда). Важное дополнение: в таких случаях (D<0) обычно уточняют – нет действительных корней. Дело в том, что в математике кроме действительных чисел, рассматриваются так называемые мнимые числа; так вот мнимые корни у такого уравнения есть. О мнимых числах и разрешимости таких квадратных уравнений мы поговорим в старших классах.

Мы вспомнили всю “азбуку” квадратного уравнения?

(Нет. Мы не вспомнили теорему Виета)

Формулируем, обращая внимание на условие D0.

Итак, все необходимые, азбучные методы решения повторили, и я приглашаю вас на презентацию иных методов решения квадратных уравнений. И для начала заполним пригласительный билет, лежащий у каждого из вас на столе. <приложение 2>

(Подписывают и заполняют таблицу)

Проверим. Возьмите в руки простой карандаш и сверим ответы.

Поднимите руки те, кто безошибочно справились с работой. Молодцы! Передайте свои заполненные билеты вперед.

Презентация специальных методов.

Обратимся к конспекту урока. Помимо традиционных методов решения квадратных уравнений есть еще специальные и общие методы. Рассмотрим каждый из специальных методов в отдельности. И оценим его “перспективы”.

Метод выделения квадрата двучлена.

Цель: Привести уравнение общего вида к неполному квадратному уравнению.

В этом нам помогут формулы сокращенного умножения, а именно, квадратов суммы и разности:

Решим уравнение х2-6х+8=0 методом выделения квадрата двучлена.

или

Ответ: 2;4.

Замечание: метод применим для любых квадратных уравнений, но не всегда удобен в использовании. Используется для доказательства формулы корней квадратного уравнения.

(Обратить внимание на возможность пойти иным путем, применяя формулу разности квадратов).

Метод “переброски” старшего коэффициента

Суть метода состоит в то, что корни квадратных уравнений

ax2 + bx + c = 0 и y2+by+ac=0

связаны соотношениями:

  и

В некоторых случаях удобно решать сначала не данное уравнение ax2 + bx + c = 0, а приведенное y2+by+ac=0, которое получается из данного “переброской” коэффициента а, а затем разделить найденные корни на а для нахождения корней исходного уравнения.

Пример: решите уравнение

2-9х-5=0

заменим приведенным квадратным уравнением с “переброской” коэффициента а

( D>0 ), по теореме, обратной теореме Виета, подбором найдем корни

вернемся к корням исходного уравнения

Ответ: 5; -0,5

Замечание: метод хорош для квадратных уравнений с “удобными” коэффициентами. В некоторых случаях позволяет решить квадратное уравнение устно.

Следующие два метода также применимы при определенных условиях и позволяют избежать громоздких вычислений.

Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен

Пример: решите уравнение

157х2+20х-177=0

a = 157, b = 20, c = -177

a + b+ c =157+20-177=0

x1 = 1,

x2 = =

Ответ: 1;

Если в квадратном уравнении a+c=b, то один из корней равен -1, а второй по теореме Виета равен

Пример: решите уравнение

203х2+220х+17=0

a = 203, b = 220, c = 17

a + c = 203 + 17 = 220 = b

х1 = -1,

Ответ: -1;

Вывод: при решении квадратного уравнения стандартного вида полезно сначала проверить являются ли числа 1 и -1 корнями уравнения.

Однако, при выборе пути решения квадратного уравнения следует помнить, что помимо специальных методов возможно применение и общих методов решения уравнений.

К таким методам относятся:

  • Разложение на множители;
  • Введение новой переменной;
  • Графический способ.

Презентация общих методов решения уравнений (Презентация).

Метод разложения на множители.

Цель: Привести квадратное уравнение общего вида к виду А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х.

Способы:

  • Вынесение общего множителя за скобки;
  • Использование формул сокращенного умножения;
  • Способ группировки.

Пример: решите уравнение

2+2х-1=0

произведение двух множителей равно нулю, если хотя бы один из них равен нулю, а второй при этом не теряет смысла, или когда оба равны нулю.

или

Ответ: -1; .

Метод введения новой переменной

Умение удачно ввести новую переменную – важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной.

Пример: решите уравнение

Пусть: t = 5х + 3

Произведем замену переменной

(Устно проверим условие D > 0) по теореме, обратной теореме Виета

t1 = 1, t2 = 2

Произведем обратную замену и вернемся к переменной х

Если t = 1, то

Если t = 2, то

Ответ: -0,4; -0,2

Вывод: при решении уравнения не следует торопиться выполнять преобразования. Посмотрите, нельзя ли записать уравнение проще, введя новую переменную.

И, наконец, наиболее “зрелищный” метод.

Графический метод.

Для решения уравнения f(x) = g(x) необходимо построить графики функций y = f(x),

y = g(x) и найти точки их пересечения; абсциссы точек пересечения и будут корнями уравнения.

Вспомним применение этого метода при решении квадратного уравнения:

 (Устно обсудить области определения )

Построим график функции

Графиком является парабола, “ветви” которой направлены вверх (0;0) – вершина параболы график симметричен относительно оси ординат

X 1 2 3
Y 1 4 9

Построим график функции y = x + 2

Линейная функция. Графиком является прямая.

X 0 -2
Y 2 0

 Точки пересечения: А(-1;1) и В(2;4)

Ответ: -1;2

Применяя графический метод в данном случае мы нашли точное значение корней, но так бывает не всегда. Однако, графический метод часто применяют не для нахождения корней уравнения, а для определения их количества.

Историческая справка

Посмотрите на многообразие методов решения. Как, когда, сразу ли появилось такое многообразие? Как много вопросов…

Безусловно, человечество “додумалось” до всего не сразу и в одночасье. Для этого потребовались долгие годы и даже столетия.

Обратимся к историческому путеводителю.

Первые упоминания о способах решения уравнений, которые мы сейчас называем квадратными относятся во второму тысячелетию до н.э. Это эпоха расцвета Вавилонии и Древнего Египта.

Первое тысячелетие н.э. – Римские завоевательные войны. К этому периоду относится творчество Диофанта. Его трактат “Арифметика” содержит ряд задач, решаемых при помощи квадратных уравнений. В IX веке узбекский математик Аль-Хорезми в Трактате “Алгебра” классифицирует квадратные уравнения. Для нас это время знаковое тем, что приблизительно в это время образуется древнерусское государство Киевская Русь.

Все это время отличные по записи уравнения считались различными. Не было единого подхода к их решению.

И только в XVI веке французский юрист, тайный советник короля Франции и математик Франсуа Виет впервые вводит в обращение буквенные обозначения не только для неизвестных величин, но и для данных, то есть коэффициентов уравнения. Тем самым заложил основы буквенной алгебры.

Более подробно с этапами развития методов решения квадратных уравнений, а так же личностью Виета и его вклада в развитие алгебры мы сможем познакомиться на конференции.

Подведение итогов.

Итак, подведем итог.

Решение квадратных уравнений, возможно, осуществлять разными методами. Для квадратных уравнений применимы не только традиционные и специальные методы решения, но и общие методы решения уравнений.

Сегодня мы обобщили опыт решения квадратных уравнений и посмотрим, как научились выбирать наиболее рациональный метод решения.

Попробуйте расшифровать высказывание из копилки “Золотых мыслей”.

<приложение1>

Для этого проанализируйте представленные уравнения, выберите для каждого более рациональный метод решения и укажите номер этого метода. Затем согласно ключу расставьте в нижней таблице слоги и прочтите высказывание.

Итак, получили высказывание Ян Амос Коменского: “Учиться нелегко, но интересно”.

Я думаю, эти слова как нельзя, кстати, подходят для окончания нашей сегодняшней презентации.

Домашнее задание

  • Решите уравнение х2+6х-16=0 по формуле, выделением квадрата двучлена и графическим методом
  • Составьте уравнения на применение теорем (метод 9, 10).
  • Решите уравнение 3х2+5х+2=0 пятью способами.
  • Решите уравнение (х2-х)2-14(х2-х)+24=0 методом введения новой переменной.